Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 234: 116539, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414390

RESUMO

The characteristics of canvas fabric-derived adsorbents and their removal efficiency on five haloacetronitriles (HANs) were investigated. In addition, the effect of chemical activation with ferric chloride (FeCl3) and ferric nitrate (Fe(NO3)3) solutions on HANs removal efficiency was determined. The results indicated that the surface area increased from 262.51 m2/g to 577.25 and 370.83 m2/g, respectively, after being activated with FeCl3 and Fe(NO3)3 solutions. Increases in surface area and pore volume had a direct impact on the effectiveness of HANs removal. As compared to the non-activated adsorbent, the activated adsorbent effectively removed five species of HANs. TCAN was highly removed by the Fe(NO3)3-activated adsorbent (94%) due to the presence of mesoporous pore volume after activation with Fe(NO3)3. On the other hand, MBAN had the lowest removal efficiency of all adsorbents in this study. The activation with FeCl3 and Fe(NO3)3 showed equal removal efficiency for DCAN, BCAN, and DBAN, with percent removal higher than 50%. The hydrophilicity of HANs species affected the removal efficiency. The hydrophilicity order of five HANs species was MBAN, DCAN, BCAN, DBAN, and TCAN, respectively, which well corresponded to the obtained removal efficiency. The canvas fabric-derived adsorbents synthesized in this study were proven to be utilized as low-cost adsorbents to efficiently remove HANs from the environment. Future research will focus on the adsorption mechanism and recycling method to realize the potential for large-scale utilization.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Purificação da Água/métodos , Adsorção , Acetonitrilas , Cinética
2.
Artigo em Inglês | MEDLINE | ID: mdl-36554984

RESUMO

Fluoride concentrations in the groundwater continue to be a major cause for concern in Thailand, particularly in the country's north and west. The process of removing fluoride through adsorption has captured the attention of the abundance of ore in the mining industry. For the purpose of this investigation, the utilization of the adsorbent pyrolusite, which is a manganese mineral largely composed of MnO2, was a major component. Lab-scale experiments were conducted to investigate the efficacy of original pyrolusite ore (PA-1) and acid-modification PA (PA-2) created as low-cost adsorption materials for fluoride removal. The results of the adsorption rate in both PAs showed a fast rate of adsorption within 60 min of reaching equilibrium. According to the results of the adsorption capacity (qe) tests, PA that had been treated with an acid solution (PA-2) had the capacity to contain more fluoride (qe = 0.58 mg/g) than the PA that had been used initially (PA-1) (qe = 0.11 mg/g). According to the findings of an isotherm, primary adsorption behavior is determined by the effect that surface components and chemical composition have on porous materials. This is the first current study that provides a comparison between pyrolusite from Thailand's mining industry and basic modified pyrolusite regarding their ability to remove a fluoride contaminant in synthetic groundwater by an adsorption process. Such an approach will be able to be used in the future to protect the community from excessive fluoride concentrations in household and drinking water treatment technology.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Fluoretos , Óxidos/química , Compostos de Manganês/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Purificação da Água/métodos , Poluentes Químicos da Água/análise
3.
Membranes (Basel) ; 12(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36005676

RESUMO

Lab-scale anoxic/oxic membrane bioreactor (A/O-MBR) and oxic membrane bioreactor (O-MBR) systems using a submerged polysulfone hollow-fiber membrane module with a pore size of 0.01 µm and a total surface area of 1.50 m2 were used to treat domestic wastewater. The sludge retention time (SRT) of each system was examined by setting the SRT to 10, 20, and infinity (no sludge withdrawal). The results showed that the total nitrogen removal efficiency of the A/O-MBR was more significant than that of the O-MBR at a SRT of infinity, with figures of 72.3% and 33.1% being found, respectively. The COD removal efficiencies of the A/O-MBR system with a SRT of 10 days, 20 days, and infinity were 82.4%, 84.3%, and 91.5%, respectively. The COD removal efficiencies of the O-MBR system with a SRT of 10 days, 20 days, and infinity were 79.3%, 81.5%, and 89.8%, respectively. An increase in the SRT resulted in an increase in the COD removal efficiency. The FEEM peak of the influent tended to decrease after an increase in the SRT for both systems (A/O-MBR and O-MBR). For the A/O-MBR system, the trihalomethane formation potential (THMFP) was significantly reduced by 88.91% (at a SRT of infinity). The THMFP declined significantly by 85.39% for the O-MBR system at a SRT of infinity. The A/O-MBR system showed a slightly higher efficiency than the O-MBR system in terms of the COD removal and the THMFP reduction. These results indicated that the MBR process, and the A/O-MBR system, in particular, could be used as an effective wastewater treatment process for many developing countries that are troubled by the emerging contamination of water and wastewater.

4.
J Environ Manage ; 315: 115099, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500481

RESUMO

The selective adsorption mechanisms involved in the competitive adsorption of five iodinated trihalomethanes (I-THMs) onto dithiolglycol and (3-mercaptopropyl)-trimethoxy functionalized HKUST-1 (HK-SH and HK-MPTS, respectively) were investigated by single- and mixed-batch adsorption. HK-SH had the highest adsorption rates and capacities for the five I-THMs, followed by HK-MPTS and pristine HKUST-1, even though the porosity and surface area decreased after modification. The primary adsorptive mechanism of HK-SH consists of ion-dipole interactions of I-THMs with the protonated hydroxyl and thiol groups at the metal (Cu) node, which is supported by Lewis acid-base reactions via Cu-Cu complex and π-π interactions. In a mixed solute, bromodiiodomethane, which was the most hydrophobic and had the smallest molecular size, exhibited the most competitive adsorption on HK-SH. In contrast, the selective adsorption of I-THMs onto HK-MPTS was affected by their log Kow values, causing hydrophobic partitioning onto the alkyl chain of the mercaptopropyl group. Iodinated haloforms tend to achieve a higher adsorption rate and capacity than chlorinated and brominated haloforms via hydrophobic partitioning. Moreover, dithiolglycol grafted onto HK-SH can better promote the excellent selective adsorption performance of iodoacetamide than dichloroiodomethane and iodoacetic acid in both single- and mixed-solute solutions due to hydrogen bonding via the -NH2 group of diiodoacetamide.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Estruturas Metalorgânicas , Soluções , Compostos de Sulfidrila , Trialometanos , Poluentes Químicos da Água/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-34501655

RESUMO

The formation of trihalomethanes (THMs) in natural and treated water from water supply systems is an urgent research area due to the carcinogenic risk they pose. Seasonal effects and pH have captured interest as potential factors affecting THM formation in the water supply and distribution systems. We investigated THM occurrence in the water supply chain, including raw and treated water from water treatment plants (coagulation, sedimentation, sand filtration, ClO2-disinfection processes, and distribution pipelines) in the Chiang Mai municipality, particularly the educational institute area. The effects of two seasons, rainy (September-November 2019) and dry (December 2019-February 2020), acted as surrogates for the water quality profile and THM occurrence. The results showed that humic acid was the main aromatic and organic compound in all the water samples. In the raw water sample, we found a correlation between surrogate organic compounds, including SUVA and dissolved organic carbon (DOC) (R2 = 0.9878). Four species of THMs were detected, including chloroform, bromodichloromethane, dibromochloromethane, and bromoform. Chloroform was the dominant species among the THMs. The highest concentration of total THMs was 189.52 µg/L. The concentration of THMs tended to increase after chlorination when chlorine dioxide and organic compounds reacted in water. The effect of pH on the formation of TTHMs was also indicated during the study. TTHM concentrations trended lower with a pH ≤ 7 than with a pH ≥ 8 during the sampling periods. Finally, in terms of health concerns, the concentration of TTHMs was considered safe for consumption because it was below the standard (<1.0) of WHO's Guideline Values (GVs).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Trialometanos/análise , Água , Poluentes Químicos da Água/análise , Abastecimento de Água
6.
Artigo em Inglês | MEDLINE | ID: mdl-34206972

RESUMO

The fluoride adsorption capacity of three types of bone char (BC), including cow BC (CBC), chicken BC (CKBC), and pig BC (PBC), was examined. At the optimum charring conditions (temperature and time), PBC had the highest hydroxyapatite (HAP) content (0.928 g-HAP/g-BC), while CBC had the highest specific surface area (103.11 m2/g-BC). CBC also had the maximum fluoride adsorption capacity (0.788 mg-F/g-HAP), suggesting that fluoride adsorption capacity depends more on the specific surface area of the BC than the HAP content. The adsorption data of CBC, CKBC, and PBC fit well with the pseudo-second-order model and the Langmuir isotherm. The maximum fluoride adsorption capacity of BC reached the maximum value when the solution had a pH of approximately 6.0. Lastly, the highest fluoride desorption occurred when the BCs were soaked in solutions with a pH higher than 11.0.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Animais , Osso e Ossos/química , Bovinos , Durapatita , Feminino , Fluoretos , Concentração de Íons de Hidrogênio , Cinética , Suínos , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 754: 142376, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254906

RESUMO

The adsorptive mechanisms operating in, and the effect of two different thiol modification methods on, the removal of five iodinated trihalomethanes (I-THMs) by the zeolite imidazolate framework (ZIF-8) were investigated in single and mixed solutions. The direct postgrafting of dithioglycol to the zinc complex node of ZIF-8 (ZF-SH) can increase the mesopore structures that enhance inner pore accessibility; this increase is a critical property required for excellent adsorption of I-THMs. The synergetic adsorptive interactions consist of Lewis acid-base interactions via the Zn-Zn complex, ion-dipole interactions involving the protonated hydroxyl and thiol groups, and hydrophobic interactions at the imidazole ring. In contrast to ZF-SH, the (3-mercaptopropyl)-trimethoxy functionalized silica coating on ZIF-8 (ZF-Si-SH) causes a lower thiol moiety and a steric effect that is reflected in its lower adsorption capacity. In both single and mixed solutions, the small molecular size and hydrophobic nature of I-THMs can promote better adsorption capacity on all thiol-modified ZIF-8, while the minus dipole charge distribution of the I-THMs structure plays a more critical role in selective adsorption on pristine ZIF-8. Interestingly, the dehalogenation of triiodomethane to diiodomethane due to a nucleophilic substitution (SN2) reaction can be accelerated by the thiol functionalized silica layer on ZIF-8.

8.
PLoS One ; 14(11): e0214976, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31756182

RESUMO

In this study, two anoxic-oxic membrane bioreactor (A/O-MBR) systems, i.e. conventional and biofilm anoxic-oxic-membrane bioreactors (C-A/O-MBR and BF-A/O-MBR, respectively), were operated in parallel under conditions of complete sludge retention for the purposes of comparing system performance and microbial community composition. Moreover, with the microbial communities, comparisons were made between the adhesive stage and the suspended stage. High average removal of COD, NH4+-N and TN was achieved in both systems. However, TP removal efficiency was remarkably higher in BF-A/O-MBR when compared with C-A/O-MBR. TP mass balance analysis suggested that under complete sludge retention, polyurethane sponges that were added into the anoxic tank played a key role in both phosphorus release and accumulation. The qPCR analysis showed that sponge biomass could maintain a higher level of abundance of total bacteria than the suspended sludge. Meanwhile, AOB and denitrifiers were enriched in the suspended sludge but not in the sponge biomass. Results of illumina sequencing reveal that the compacted sponge in BF-A/O-MBR could promote the growth of bacteria involved in nutrient removal and reduce the amount of filamentous and bacterial growth that is related to membrane fouling in the suspended sludge.


Assuntos
Reatores Biológicos , Carbono/isolamento & purificação , Águas Residuárias/química , Purificação da Água/métodos , Aerobiose , Biofilmes , Biomassa , Reatores Biológicos/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Microbiota/genética , Nitrogênio/isolamento & purificação , Nutrientes/isolamento & purificação , Esgotos/química , Esgotos/microbiologia , Purificação da Água/instrumentação , Qualidade da Água
9.
Heliyon ; 5(9): e02391, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31517119

RESUMO

Fluoride intake from tap water supplied by fluoride-containing groundwater has been the primary cause of fluorosis among the residents of Buak Khang Subdistrict, Chiang Mai Province, Thailand. To reduce fluoride intake, bottled water treated using reverse-osmosis membranes has been made available by community-owned water treatment plants. This study aimed to assess the resultant reduction in fluoride intake from using bottled water for drinking and cooking. Water consumption surveys were conducted by providing bottled water to 183 individuals from 35 randomly selected households and recording the amount of water consumed for drinking and cooking. The mean drinking water consumption was 1.62-1.88 L/capita/day and the cooking water consumption on weekends (5.06 ± 3.04 L/household/day) was higher than that on weekdays (3.80 ± 1.90 L/household/day). The per capita drinking water consumption exhibited a positive correlation with body weight; however, the low-weight subjects consumed more drinking water per kilogram of body weight than the heavy subjects. Although sex and day of the week did not significantly affect drinking water consumption per capita, girls consumed less water in school possibly due to their group mentality. Drinking water consumption per kilogram of body weight was significantly higher among women, children, and the elderly because these groups generally have low body weights. The fluoride intake from using tap water for drinking and cooking was estimated to be 0.18 ± 0.10 mg/kg-body weight/day and 5.55 ± 3.52 mg/capita/day, respectively, whereas using bottled water for drinking and cooking reduced the fluoride intake to 0.002 ± 0.002 mg/kg-body weight/day and 0.07 ± 0.05 mg/capita/day, respectively. Despite the increased cost, 98% and 90% of the subjects selected bottled water over tap water for drinking and cooking, respectively; thus, bottled water delivery services could be used to mitigate fluoride intake in developing countries.

10.
Water Sci Technol ; 79(5): 857-865, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31025964

RESUMO

This research study aims to investigate the efficiency of synthesized porous pig bone char (PBC) for reduction of disinfection by-product (DBP) precursors from surface water. Dissolved organic matter (DOM) is commonly present in natural water and acts as a disinfection by-product precursor. Adsorption is one of the promising technologies that is commonly applied for DOM removal. Interestingly, the properties of pig bone are such that it has a surface area and pore volumes that can adsorb DOM. Pig bone was synthesized as porous bone char (PBC). The results show that synthesized PBC at 900 °C (PBC-900 °C) provides a high volume of mesoporous structure. The adsorption process was best fitted with the pseudo-second-order and Freundlich isotherm model. Thus, the mechanisms occurred on the multilayer adsorption of the surface. PBC-900 °C can remove approximately 70-80% of DOM with varying concentrations, from 0.2 g/L to 0.8 g/L. Furthermore, the results of fluorescence excitation-emission (FEEM) showed that humic acids and humic-like substances in water can be removed by using PBC at concentrations higher than 0.4 g/L. From the obtained results, it can be concluded that PBC is an alternative low-cost adsorbent which can be utilized for reduction of DBP precursors from water.


Assuntos
Desinfetantes/análise , Desinfecção , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Animais , Osso e Ossos/química , Carvão Vegetal/química , Substâncias Húmicas , Porosidade , Suínos , Água
11.
Artigo em Inglês | MEDLINE | ID: mdl-29420121

RESUMO

Raw water from the Banglen (BL) water treatment plant (WTP) and Bangkhen (BK) WTP in central Thailand and Hatyai (HY) WTP in southern Thailand was investigated for dissolved organic nitrogen (DON) reduction. The DON(mg N/L) and the dissolved organic carbon (DOC)/DON ratio were 0.34 and 21, 0.24 and 18, and 1.12 and 3 for the raw waters from BL, BK, and HY WTPs, respectively. Polyaluminum chloride (PACl) dosages of 150, 80, and 40 mg/L at pH 7 were the optimal coagulation conditions for the raw waters from BL, BK, and HY WTPs, respectively, and could reduce DON by 50%, 42%, and 42%, respectively. PACl and powder activated carbon (PAC, both in mg/L) at 150 and 20, 80 and 20, and 40 and 60 could reduce DON in the raw waters from BL, BK, and HY WTPs by 71%, 67%, and 29%, respectively. DOC/DON values of water treated with PACl were similar to those of raw water. DOC/DON values of water treated with PACl and PAC were lower than those of raw water. N-nitrosodimethylamine (NDMA) formation potentials of raw water, water treated with PACl, or both PACl and PAC, and organic fractions of BL, BK, and HY WTPs were below the detection limits of 542 and 237 ng/L, respectively. Reductions in fluorescence intensities of tryptophan-like substances at peaks 240/350 and 280/350 (nmEx/nmEm) were moderately (correlation coefficient, R = 0.85 and 0.86) and fairly (R = 0.59, 0.67, and 0.75) correlated with DON reduction.


Assuntos
Dimetilnitrosamina/química , Nitrogênio/química , Purificação da Água/métodos , Hidróxido de Alumínio/farmacologia , Carbono/química , Carvão Vegetal/química , Nitrogênio/isolamento & purificação , Compostos Orgânicos/química , Tailândia , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
12.
Chemosphere ; 136: 222-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26025186

RESUMO

The selective adsorption mechanisms of naproxen (NAP), acetaminophen (ACT), and clofibric acid (CFA) on silica-based porous materials were examined by single and mixed-batch adsorption. Effects of the types and densities of surface functional groups on adsorption capacities were determined, including the role of hydrophobic and hydrophilic dissolved organic matters (DOMs). Hexagonal mesoporous silica (HMS), superparamagnetic HMS (HMS-SP) and SBA-15 were functionalized and applied as adsorbents. Compared with powdered activated carbon (PAC), amine-functionalized HMS had a better adsorption capacity for CFA, but PAC possessed a higher adsorption capacity for the other pharmaceuticals than HMS and its two derivatives. In contrast to PAC, the adsorption capacity of the mesoporous silicas varied with the solution pH, being highest at pH 5. Electrostatic interactions and hydrogen bonding were found to be the main mechanisms. Increase in grafted amine group density on silica surfaces can enhance the CFA adsorption capacity. Further, hydrophilic DOM can decrease CFA adsorption capacities on amino-grafted adsorbents by adsorption site competition, while hydrophobic DOM can interfere with CFA adsorption by the interaction between hydrophobic DOM and CFA. Finally, in a competitive adsorption study, the adsorption capacity of hydrophilic adsorbents for acidic pharmaceuticals varied with their pKa values.


Assuntos
Anti-Inflamatórios não Esteroides/química , Dióxido de Silício/química , Poluentes Químicos da Água/química , Acetaminofen , Adsorção , Carvão Vegetal , Interações Hidrofóbicas e Hidrofílicas , Naproxeno , Porosidade , Soluções , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...